PRODUCT
SDS

Why Magnets Attract Metals

Materials are magnetic if their valence electrons align in a special way. This is most likely to happen in transition metals, since they have many loosely held valence electrons. Iron, cobalt and nickel are often magnetic. The earth's iron core makes it a giant magnet, and the terms north and south are used to describe the two directions of a magnetic field. The north pole of a magnet is attracted to the earth's North Pole.

magnet

Compounds can also be magnetic. An iron ore with the formula Fe3O4 found in Magnesia, Turkey was called magnetite, and its name because associated with the unusual property. In medieval times the rock was called lodestone (since it will "lead" north) and it was used for navigation. People discovered that iron or steel needles could be rubbed on the rock to acquire magnetization. These needles were made into navigational compasses.

magnet ring
Ceramic magnets such as iron, cobalt, and chromium oxides are manufactured by powder metallurgy. Small particles can be mixed with polymers to make flexible refrigerator magnets, or coated on plastic strips to make audio and video recording tapes. Strong magnetic fields are applied during processing to align the fields of the particles. Deposition of thin films in a vacuum chamber is used for computer hard drives.
Alloys can make very strong magnets. The first successful combination, aluminumnickel-cobalt, was discovered in the 1930's. Alloys containing rare earth elements are even more successful. Samarium cobalt and neodymium-iron-boron are two common combinations.
In the early 1800's it was discovered that electric current running through coils of wire creates a magnetic field. Electromagnets are used in electric transformers.
Magnetism may be lost when a material is heated. Upon heating the electrons gain energy and can reorient, losing their special alignment.

About the author

Chin Trento

Chin Trento holds a bachelor’s degree in applied chemistry from the University of Illinois. His educational background gives him a broad base from which to approach many topics. He has been working with writing advanced materials for over four years in Stanford Advanced Materials (SAM). His main purpose in writing these articles is to provide a free, yet quality resource for readers. He welcomes feedback on typos, errors, or differences in opinion that readers come across.

REVIEWS
{{viewsNumber}} Thought On "{{blogTitle}}"
{{item.created_at}}

{{item.content}}

LEVE A REPLY (Cancle reply)

Your email address will not be published. Required fields are marked*

Comment
Name*
Email*
{{item.children[0].created_at}}

{{item.children[0].content}}

{{item.created_at}}

{{item.content}}

More Replies

LEAVE A REPLY

Your email address will not be published. Required fields are marked*

Comment
Name*
Email*

Related News & Articles

MORE >>
Thermocouple Wire Identification
Positive or Negative? A Beginner's Guide to Thermocouple Wire Identification

Correctly identifying a thermocouple by its wire color coding is crucial for ensuring accurate temperature measurements.

READ MORE >
Aerosolized powder-making equipment
Satellite Phenomena in Metal Powder: A Deep Dive into Additive Manufacturing Challenges

Satellite powder formation in the additive manufacturing (AM) process is a critical issue affecting the quality of metal powders.

READ MORE >
Cast Grinding Balls
Cast Grinding Balls vs. Forged Grinding Balls: Making the Right Choice

This article provides an in-depth comparison between cast and forged grinding balls, essential components in industrial milling operations. It covers the distinctions in material composition, microstructure, hardness, impact toughness, and cost implicati

READ MORE >
Leave A Message
Leave a Message
*Your Name:
*E-mail:
*Product name:
*Your Phone:
*Message: