PRODUCT
SDS

Graphene Transistors Made From DNA

In the world of electronics, smaller, cheaper and faster computer chips means better. Silicon has been popularized for a long time as a material used in making chips. As scientists continuously improve building smaller and higher speed chips, there comes a certain point that heat and other interfering factors interrupt some functions of silicon chips.

The primary running unit on a chip is the transistor. Transistors function as tiny gates for electric signals capable of amplification. At present, a promising technology may address the means for building smaller yet faster transistors with less power consumption. Stanford chemical engineering professor Zhenan Bao with her co-authors, former post-doctoral fellows Fung Ling Yap and Anatoliy Sokolov revealed the procedure of using DNA as a model to assemble the new generation of electronic chips based on this known wonder material-graphene, instead of silicon.

Bao and her colleagues believe that graphene’s physical and electrical properties could provide a very fast chip requiring only very little amount of power. Due to such thinness of graphene- one atom thick- and 20-50 atoms width, they came up with the idea of using DNA, which chemically contains carbon atoms, to provide a template for the graphene synthesis. DNA’s physical characteristics and organizational system let scientist assemble the graphene template proficiently.

The Stanford team initiated the process by dipping a platter of silicon into a DNA rich solution then stretching out DNA strands by combing these homogenously straight. Afterwards, DNA on the platter was treated with a copper salt solution where copper ions were ingested into the DNA. The copper-doped DNA was then heated and bathed in hydrocarbon methane gas. The heat triggered in this procedure releases some carbon atoms which are formed into pure-carbon honeycomb of graphene.

According to Bao, the process is not yet perfect as not all of carbon atoms formed into honeycomb structures- some clustered into irregular patterns. Nevertheless, this low-cost technique, has great potential and could possibly replace silicon.

About the author

Chin Trento

Chin Trento holds a bachelor’s degree in applied chemistry from the University of Illinois. His educational background gives him a broad base from which to approach many topics. He has been working with writing advanced materials for over four years in Stanford Advanced Materials (SAM). His main purpose in writing these articles is to provide a free, yet quality resource for readers. He welcomes feedback on typos, errors, or differences in opinion that readers come across.

REVIEWS
{{viewsNumber}} Thought On "{{blogTitle}}"
{{item.created_at}}

{{item.content}}

LEVE A REPLY (Cancle reply)

Your email address will not be published. Required fields are marked*

Comment
Name*
Email*
{{item.children[0].created_at}}

{{item.children[0].content}}

{{item.created_at}}

{{item.content}}

More Replies

LEAVE A REPLY

Your email address will not be published. Required fields are marked*

Comment
Name*
Email*

Related News & Articles

MORE >>
Thermocouple Wire Identification
Positive or Negative? A Beginner's Guide to Thermocouple Wire Identification

Correctly identifying a thermocouple by its wire color coding is crucial for ensuring accurate temperature measurements.

READ MORE >
Aerosolized powder-making equipment
Satellite Phenomena in Metal Powder: A Deep Dive into Additive Manufacturing Challenges

Satellite powder formation in the additive manufacturing (AM) process is a critical issue affecting the quality of metal powders.

READ MORE >
Cast Grinding Balls
Cast Grinding Balls vs. Forged Grinding Balls: Making the Right Choice

This article provides an in-depth comparison between cast and forged grinding balls, essential components in industrial milling operations. It covers the distinctions in material composition, microstructure, hardness, impact toughness, and cost implicati

READ MORE >
Leave A Message
Leave a Message
*Your Name:
*E-mail:
*Product name:
*Your Phone:
*Message: