Products
  • Products
  • Categories
  • Blog
  • Podcast
  • Application
  • Document
|
Stanford Advanced Materials
/ {{languageFlag}}
Select Language
Stanford Advanced Materials {{item.label}}

Graphene Transistors Made From DNA

In the world of electronics, smaller, cheaper and faster computer chips means better. Silicon has been popularized for a long time as a material used in making chips. As scientists continuously improve building smaller and higher speed chips, there comes a certain point that heat and other interfering factors interrupt some functions of silicon chips.

The primary running unit on a chip is the transistor. Transistors function as tiny gates for electric signals capable of amplification. At present, a promising technology may address the means for building smaller yet faster transistors with less power consumption. Stanford chemical engineering professor Zhenan Bao with her co-authors, former post-doctoral fellows Fung Ling Yap and Anatoliy Sokolov revealed the procedure of using DNA as a model to assemble the new generation of electronic chips based on this known wonder material-graphene, instead of silicon.

Bao and her colleagues believe that graphene’s physical and electrical properties could provide a very fast chip requiring only very little amount of power. Due to such thinness of graphene- one atom thick- and 20-50 atoms width, they came up with the idea of using DNA, which chemically contains carbon atoms, to provide a template for the graphene synthesis. DNA’s physical characteristics and organizational system let scientist assemble the graphene template proficiently.

The Stanford team initiated the process by dipping a platter of silicon into a DNA rich solution then stretching out DNA strands by combing these homogenously straight. Afterwards, DNA on the platter was treated with a copper salt solution where copper ions were ingested into the DNA. The copper-doped DNA was then heated and bathed in hydrocarbon methane gas. The heat triggered in this procedure releases some carbon atoms which are formed into pure-carbon honeycomb of graphene.

According to Bao, the process is not yet perfect as not all of carbon atoms formed into honeycomb structures- some clustered into irregular patterns. Nevertheless, this low-cost technique, has great potential and could possibly replace silicon.

CATEGORIES
About the author

Chin Trento

Chin Trento holds a bachelor’s degree in applied chemistry from the University of Illinois. His educational background gives him a broad base from which to approach many topics. He has been working with writing advanced materials for over four years in Stanford Advanced Materials (SAM). His main purpose in writing these articles is to provide a free, yet quality resource for readers. He welcomes feedback on typos, errors, or differences in opinion that readers come across.

REVIEWS
{{viewsNumber}} Thought On "{{blogTitle}}"
{{item.created_at}}

{{item.content}}

blog.levelAReply (Cancle reply)

Your email address will not be published. Required fields are marked*

Comment
Name *
Email *
{{item.children[0].created_at}}

{{item.children[0].content}}

{{item.created_at}}

{{item.content}}

blog.MoreReplies

LEAVE A REPLY

Your email address will not be published. Required fields are marked*

Comment
Name *
Email *

Related News & Articles

MORE >>
D33 Values in Piezoelectric Crystals: Implications for Practical Applications

Discover how d33 values in piezoelectric crystal materials influence their efficiency and performance in practical applications, including sensors, actuators, and energy harvesters. This article delves into the factors affecting d33 and its critical role in optimizing piezoelectric technologies.

READ MORE >
Molybdenum Sputtering Target
A Detailed Guide to Powder Metallurgy for Sputtering Target Fabrication

Powder metallurgy (PM) offers a flexible, material-efficient, and scalable method for producing high-density sputtering targets with tailored microstructures.

READ MORE >
Six Must-Knows about DFARS

The Defense Federal Acquisition Regulation Supplement, known as DFARS, is a foundational framework used by the U.S. Department of Defense (DoD) to govern defense contracting. Understanding DFARS is essential for any entity involved in the U.S. defense supply chain. This article provides a structured overview answering six key questions: What, Who, Which, Why, When, and How.For more non-China, domestic, and DFARS compliant materials, please check Stanford Advanced Materials.

READ MORE >
Leave A Message
Leave A Message
* Your Name:
* Your Email:
* Product Name:
* Your Phone:
* Comments: