Separation of Zirconium and Hafnium

What is Zirconium?

Zirconium, Zr, is an element with an atomic number 40 and an atomic weight of 91.224. Most zirconium is produced by refining mineral zircon. Zr is applied in the nuclear industry as the zirconium has a low neutron-capture cross-section. Zr is consumed in the form of zircaloys, usually, Zircaloy-2 and Zircaloy-4, to make fuel rods for nuclear reactors.

Since Zirconium has very good chemical corrosion resistance, zirconium shapes, such as zirconium tubes and plates are used to make equipment for the chemical industry. Zr is also used as an additive for steel and zirconium oxide, sometimes known as zirconia, is used in the production of ceramics.

What is Hafnium?

Hafnium, which is the element that shares the same group as Zr, has a higher density and a much larger neutron capture cross-section. Content of Hf impurity must be very low in zircaloy products if they are applied in the nuclear industry.

What is Zircon?

Zircon, a major resource of pure Zr, usually has some Hf and the separation of Zr and Hf is extremely hard. As these two elements are in the same group, they have similar chemical properties.

Usually, a liquid extraction method is applied for the separation of zirconium and hafnium and several systems have been developed. Distillation of molten salt is also developed for the separation process. However, all of the processes above are expensive compared with common metal purification processes. Besides, the liquid extraction process uses a large quantity of water and makes lots of waste.

Usually, there is no need to remove all of the hafnium from zirconium, unless it issued for the nuclear industry. Thus, the low hafnium products could be hard to source in the normal market. Although the process of reducing zirconium from its slat by magnesium is usually cheaper, high-quality pure zirconium is still produced in the form of Zr crystal bar. The Market price of low Hafnium Zirconium materials could cost 50~100% more compared with high Hf Zirconium.

Conclusion

Stanford Advanced Materials provides high purity crystal bars of Zirconium as your Zr source. Both low Hafnium and high hafnium product is available. Hf content of our crystal bar could be lower than 250ppm. 

About the author

Chin Trento

Chin Trento holds a bachelor’s degree in applied chemistry from the University of Illinois. His educational background gives him a broad base from which to approach many topics. He has been working with writing advanced materials for over four years in Stanford Advanced Materials (SAM). His main purpose in writing these articles is to provide a free, yet quality resource for readers. He welcomes feedback on typos, errors, or differences in opinion that readers come across.

 Previous Next 

Categories

Want More Info?

** Email address with your company's domain name is preferred. Otherwise, we may not be able to process your inquiry.

LATEST NEW & ARTICLES

tungsten copper alloy
What Is the Use of Tungsten-Copper Alloy?

High-Purity Molybdenum Electrode
Production Method of High-Purity Molybdenum Electrode

Molybdenum Alloys in the Aerospace and Steel Industry
Uses of Molybdenum Alloys in the Aerospace and Steel Industry

SUBSCRIBE TO OUR NEWSLETTER

*INDICATES REQUIRED FIELD

** Email address with your company's domain name is preferred. Otherwise, we may not be able to process your inquiry.